Evaluation of Fading Rate of Photochromic Lenses in Domestic Market

Dong-Sik Yu*, Hyun Gug Cho, and Byeong-Yeon Moon

Dept. of Optometry, Kangwon National University, Samcheok 25949, Korea
(Received February 1, 2017: Revised February 20, 2017: Accepted March 30, 2017)

Purpose: This study aimed to evaluate the fading rate and factors affecting the performance of photochromic lenses. Methods: Thirty six brands of photochromic lenses were collected from 14 companies in domestic market. Transmittances (T%) of the lenses depending on time were measured within visible wavelength after activated (colored) state by UV irradiation. An UV/VIS spectrometer was used to obtain the transmittance. Fading rates were evaluated by half-life time (t1/2), and fading time to the 80% transmittance (T80%). Results: The performance of photochromic lenses was better expressed as the difference between colorless and colored state (ΔT%) than the change of optical density (ΔOD) and optical blocking % ratio (block %). For the t1/2 of photochromic lenses, coating method was significantly faster than those of imbibition and casting method (one-way ANOVA, p=0.001). For the T80%, the lens of the high index was significantly faster than middle index (student’s t-test, p=0.034), and the lens with gray color was significantly faster than brown color (student’s t-test, p=0.005). But the T80% was significantly faster than middle index (student’s t-test, p=0.005). For the T80% of the lens with high index was no significant correlation with t1/2. The photochromic action had a wide variety of 14.9% to 48.9% for ΔT%, 44 sec to 217 sec for t1/2, and 127sec (2′ 07″) to 3,523 sec (58′ 43″) for T80%. Conclusions: The performance of photochromic lenses based on fading rate had a large difference among brands. Therefore, the manufacture companies should provide consumer and agent with correct photochromic information (ΔT%, t1/2, T80%) in relation to fading rate.

Key words: Photochromic lens, Fading rate, Half-life time, Transmittance, Domestic market

서론

광변색렌즈는 자외선을 흡수하면 무색 상태에서 유색 상태(color state 또는 activated state)로 변하고, 빛을 차단하면 무색 상태(inactivated state 또는 colorless state)로 되돌아온다. 이와 같은 광변색렌즈는 야외에서 선글라스로, 실내에서는 무색 안경렌즈로 사용할 수 있기 때문에 편리하다. 어김 휴가철이나 야외 활동이 증가하는 시기에 선글라스 수요가 많아지고 이와 더불어 광변색렌즈의 수도 늘어난다. 이에 광변색렌즈 제조사들은 시장 동력을 위한 제조자 및 기술력을 강조하고 있다. 제조사들이 강조하는 비교 대상의 기술력의 항목은 변색속도(activating rate 또는 darkening rate), 퇴색속도(fading rate), 실내 무명도(transparency) 등이다. 이러한 항목에 대한 제조사들의 평가는 자체 브랜드 제품이 우수하다는 것이다. 그러나 각 제조사 간의 상대적 평가는 찾아보기 힘들고 명확하지 않아 제품별 특성을 찾기가 힘들다.

유동되고 있는 광변색렌즈는 대부분 플라스틱 렌즈로 광 변색 물질(photochromic dye)과 플라스틱에 적용시키는 방식, 즉 캐스팅(casting 또는 in-mass)법, 침투(imbibition)법, 코팅(coating)법에 따라 변색의 특성에서 차이를 보이며 보인다. 그러나 유동되는 대부분의 광변색렌즈는 안경 렌즈의 광학적 특성의 우선순위, 즉 굽짐률, 굽결률, 중심 두께, 투과율과 색상에 대한 정보 외에 광변색에 대한 특성을 파악하기 힘들다. 이러한 상황에서 유동되고 있는 수종의 광변색렌즈에 대한 변색 특성을 비교할 필요가 있다.

*Corresponding author: Dong-Sik Yu, TEL: +82-33-540-3415, E-mail: yds@kangwon.ac.kr
으로서 장점을 약하게 하는 요인이다. 이러한 관점에서 광변색렌즈는 유통 과정에서 광변색렌즈의 특성, 특히 퇴색 속도에 관한 정보를 제공할 필요가 있을 것이다.
따라서 본 연구의 방향은 국내 유통되는 광변색렌즈를 중심으로 제품별 퇴색속도와 제조 방법, 색상, 굴절률 차이에 따른 퇴색속도를 중심으로 퇴색의 특성을 파악하고자 하였다.

대상 및 방법

1. 평가 대상
국내에 유통되는 렌즈 중심으로 14개사 36개광변색렌즈를 수집하였으며 제품별 명세서는 Table 1과 같다. 색상은 회색과 갈색렌즈가 각각 19개와 17개, 중굴절렌즈 22개와 고굴절렌즈 14개, 렌즈 중앙 두께는 1.92~2.53 mm, 광변색렌즈의 제조법은 캐스팅 12개, 침투법 10개 및 코팅법 14개 제품으로 구성되었다.

2. 평가 방법
1) 투과율 측정
광변색렌즈의 투과율(Transmittance, T)은 UV/Vis 분광광도계(X-ma 2000, Human, Korea)를 사용하여 1 nm 간격으로 380~780 nm까지 측정하였고, 흡광도(Absorbance, A)는 일반적으로 알려진 투과율과의 관계식, 즉 \[A = 2 \log(T) \] 으로 환산하여 사용하였다.

2) 퇴색속도 결정
광변색렌즈의 퇴색속도를 결정하기 위해 광변색렌즈의 퇴색 후 0, 120, 240, 640 sec 간격으로 투과율을 측정하였다. 퇴색시간을 나타내는 반반감기(half-life time) 결정은 무색으로 퇴색되는 과정이 분자내의 폐환(closed ring) 과정이며 비교적 단단한 1차 반응으로 다음 방정식에 의해 반반감기를 평가하였다.\[-\ln(A_t/A_0) = kt \]
\[t_{1/2} = \frac{\ln 2}{k} \] (2)
여기서 \(A_t \)는 시간의 흡광도(absorbance after t), \(A_0 \)는 초기 흡광도(absorbance in activated state), \(A_\infty \)는 완전 페환된 흡광도(absorbance in colorless state), \(k \)는 속도상수(rate constant)이고, \(t \)는 반반감기이다. 따라서 반반감기는 속도상수가 결정되면 식(2)에 의해 결정된다.

퇴색속도는 가시광선 영역에서 최대 흡광도를 갖는 과

| Table 1. Specification of photochromic lenses with plano used in the study |
|-------------------------------|-----|-----|------------------|
| Photochromic lens | Index | CT, mm | Manufacture process |
| SWG5 gray | 1.56 | 2.09 | Casting |
| SWG5 brown | 1.56 | 2.09 | Casting |
| NKT5 gray | 1.5 | 1.98 | Casting |
| NKT5 brown | 1.5 | 1.92 | Casting |
| RDP5 gray | 1.54 | 2.06 | Casting |
| RDP5 brown | 1.54 | 2.07 | Casting |
| CVS5 gray | 1.56 | 2.43 | Casting |
| CVS5 brown | 1.56 | 2.45 | Casting |
| JAP5 gray | 1.56 | 2.44 | Casting |
| JAP5 brown | 1.56 | 2.50 | Casting |
| DMP5 gray | 1.55 | 2.52 | Casting |
| DMP5 brown | 1.55 | 2.53 | Casting |
| DMT5 gray | 1.5 | 2.51 | Imbibition |
| DMT5 brown | 1.5 | 2.50 | Imbibition |
| DMT6 gray | 1.6 | 2.26 | Imbibition |
| DMT6 brown | 1.6 | 2.36 | Imbibition |
| CMT6 gray | 1.6 | 1.97 | Imbibition |
| CMT6 brown | 1.6 | 1.98 | Imbibition |
| TOA5 gray | 1.56 | 2.13 | Imbibition |
| TOA5 brown | 1.56 | 2.14 | Imbibition |
| YJG6 gray | 1.6 | 2.00 | Casting |
| YJG6 brown | 1.6 | 2.00 | Casting |
| OTS6 gray | 1.6 | 1.98 | Coating |
| OTS6 brown | 1.6 | 2.03 | Coating |
| HYS5 gray | 1.5 | 2.25 | Coating |
| HYS5 brown | 1.5 | 2.30 | Coating |
| HYS6 gray | 1.6 | 2.04 | Coating |
| HYS6 brown | 1.6 | 2.19 | Coating |
| CZP5 gray | 1.5 | 2.17 | Coating |
| CZP5 brown | 1.5 | 2.12 | Coating |
| CZP6 gray | 1.6 | 2.16 | Coating |
| CZP6 brown | 1.6 | 2.26 | Coating |
| SMS5 gray | 1.5 | 2.06 | Coating |
| SMS5 brown | 1.5 | 2.04 | Coating |
| SMS6 gray | 1.6 | 2.04 | Coating |
| SMS6 brown | 1.6 | 2.06 | Coating |
| Glass gray | 1.52 | 2.47 | Casting |

*The first two characters mean initials of company names and the next one character indicates initials of brand names, a digit number indicate 5 for middle index and 6 for high index, the next words show colors of photochromic lenses. Index: middle index for 1.5-1.56 and high index for 1.6, CT: center thickness.
Table 2. Spectroscopic data for photochromic lenses in visible range

<table>
<thead>
<tr>
<th>Photochromic lens</th>
<th>λ_{max}</th>
<th>T_{max}</th>
<th>ΔOD</th>
<th>Transmittance in 380-780 nm range</th>
<th>Colorless state %</th>
<th>Colored state %</th>
<th>$\Delta T%$</th>
<th>PF †</th>
<th>Block %</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWG5 gray</td>
<td>598</td>
<td>90.0</td>
<td>0.272</td>
<td>83.6</td>
<td>60.7</td>
<td>22.9</td>
<td>1.377</td>
<td>27.4</td>
<td></td>
</tr>
<tr>
<td>SWG5 brown</td>
<td>502</td>
<td>89.1</td>
<td>0.232</td>
<td>86.5</td>
<td>64.3</td>
<td>22.2</td>
<td>1.345</td>
<td>25.7</td>
<td></td>
</tr>
<tr>
<td>NKT5 gray</td>
<td>590</td>
<td>94.1</td>
<td>0.498</td>
<td>86.9</td>
<td>51.0</td>
<td>35.9</td>
<td>1.704</td>
<td>41.3</td>
<td></td>
</tr>
<tr>
<td>NKT5 brown</td>
<td>580</td>
<td>95.3</td>
<td>0.385</td>
<td>88.0</td>
<td>55.9</td>
<td>32.1</td>
<td>1.574</td>
<td>36.5</td>
<td></td>
</tr>
<tr>
<td>RDP5 gray</td>
<td>596</td>
<td>94.0</td>
<td>0.234</td>
<td>84.5</td>
<td>61.5</td>
<td>23.0</td>
<td>1.374</td>
<td>27.2</td>
<td></td>
</tr>
<tr>
<td>RDP5 brown</td>
<td>572</td>
<td>94.6</td>
<td>0.219</td>
<td>85.2</td>
<td>62.0</td>
<td>23.2</td>
<td>1.374</td>
<td>27.2</td>
<td></td>
</tr>
<tr>
<td>CVS5 gray</td>
<td>610</td>
<td>88.0</td>
<td>0.231</td>
<td>80.4</td>
<td>61.0</td>
<td>19.4</td>
<td>1.318</td>
<td>24.1</td>
<td></td>
</tr>
<tr>
<td>CVS5 brown</td>
<td>601</td>
<td>94.3</td>
<td>0.197</td>
<td>85.0</td>
<td>60.8</td>
<td>24.2</td>
<td>1.398</td>
<td>28.5</td>
<td></td>
</tr>
<tr>
<td>JAP5 gray</td>
<td>587</td>
<td>93.7</td>
<td>0.345</td>
<td>88.1</td>
<td>59.4</td>
<td>28.7</td>
<td>1.483</td>
<td>32.6</td>
<td></td>
</tr>
<tr>
<td>JAP5 brown</td>
<td>484</td>
<td>80.3</td>
<td>0.176</td>
<td>83.3</td>
<td>68.4</td>
<td>14.9</td>
<td>1.218</td>
<td>17.9</td>
<td></td>
</tr>
<tr>
<td>DMP5 gray</td>
<td>591</td>
<td>96.4</td>
<td>0.332</td>
<td>88.1</td>
<td>59.7</td>
<td>28.4</td>
<td>1.476</td>
<td>32.2</td>
<td></td>
</tr>
<tr>
<td>DMP5 brown</td>
<td>584</td>
<td>95.2</td>
<td>0.226</td>
<td>88.1</td>
<td>64.1</td>
<td>24.0</td>
<td>1.374</td>
<td>27.2</td>
<td></td>
</tr>
<tr>
<td>DMT5 gray</td>
<td>596</td>
<td>93.6</td>
<td>0.631</td>
<td>86.2</td>
<td>41.6</td>
<td>44.6</td>
<td>2.072</td>
<td>51.7</td>
<td></td>
</tr>
<tr>
<td>DMT5 brown</td>
<td>570</td>
<td>94.3</td>
<td>0.565</td>
<td>88.2</td>
<td>47.9</td>
<td>40.3</td>
<td>1.841</td>
<td>45.7</td>
<td></td>
</tr>
<tr>
<td>DMT6 gray</td>
<td>593</td>
<td>93.7</td>
<td>0.586</td>
<td>85.3</td>
<td>42.3</td>
<td>43.0</td>
<td>2.017</td>
<td>50.4</td>
<td></td>
</tr>
<tr>
<td>DMT6 brown</td>
<td>569</td>
<td>93.4</td>
<td>0.534</td>
<td>85.7</td>
<td>48.3</td>
<td>37.4</td>
<td>1.774</td>
<td>43.6</td>
<td></td>
</tr>
<tr>
<td>CMT6 gray</td>
<td>597</td>
<td>94.7</td>
<td>0.691</td>
<td>86.2</td>
<td>37.6</td>
<td>48.6</td>
<td>2.293</td>
<td>56.4</td>
<td></td>
</tr>
<tr>
<td>CMT6 brown</td>
<td>442</td>
<td>93.3</td>
<td>0.747</td>
<td>88.2</td>
<td>44.2</td>
<td>44.0</td>
<td>1.995</td>
<td>49.9</td>
<td></td>
</tr>
<tr>
<td>TOA5 gray</td>
<td>583</td>
<td>89.4</td>
<td>0.557</td>
<td>84.2</td>
<td>48.5</td>
<td>35.7</td>
<td>1.736</td>
<td>42.4</td>
<td></td>
</tr>
<tr>
<td>YJG6 gray</td>
<td>596</td>
<td>91.3</td>
<td>0.348</td>
<td>85.9</td>
<td>57.6</td>
<td>28.3</td>
<td>1.491</td>
<td>32.9</td>
<td></td>
</tr>
<tr>
<td>YJG6 brown</td>
<td>444</td>
<td>92.5</td>
<td>0.301</td>
<td>89.0</td>
<td>65.0</td>
<td>24.0</td>
<td>1.369</td>
<td>27.0</td>
<td></td>
</tr>
<tr>
<td>OTS6 gray</td>
<td>579</td>
<td>92.2</td>
<td>0.482</td>
<td>84.2</td>
<td>51.9</td>
<td>32.3</td>
<td>1.622</td>
<td>38.4</td>
<td></td>
</tr>
<tr>
<td>OTS6 brown</td>
<td>582</td>
<td>92.0</td>
<td>0.290</td>
<td>84.3</td>
<td>60.5</td>
<td>23.8</td>
<td>1.393</td>
<td>28.2</td>
<td></td>
</tr>
<tr>
<td>HYS5 gray</td>
<td>595</td>
<td>91.5</td>
<td>0.685</td>
<td>85.3</td>
<td>39.4</td>
<td>45.9</td>
<td>2.165</td>
<td>53.8</td>
<td></td>
</tr>
<tr>
<td>HYS5 brown</td>
<td>462</td>
<td>89.7</td>
<td>0.614</td>
<td>86.5</td>
<td>45.9</td>
<td>40.6</td>
<td>1.885</td>
<td>46.9</td>
<td></td>
</tr>
<tr>
<td>HYS6 gray</td>
<td>598</td>
<td>91.8</td>
<td>0.630</td>
<td>84.2</td>
<td>40.7</td>
<td>43.5</td>
<td>2.069</td>
<td>51.7</td>
<td></td>
</tr>
<tr>
<td>HYS6 brown</td>
<td>577</td>
<td>93.3</td>
<td>0.535</td>
<td>86.4</td>
<td>47.2</td>
<td>39.2</td>
<td>1.831</td>
<td>45.4</td>
<td></td>
</tr>
<tr>
<td>CZP5 gray</td>
<td>582</td>
<td>93.4</td>
<td>0.609</td>
<td>86.1</td>
<td>46.9</td>
<td>39.2</td>
<td>1.836</td>
<td>45.5</td>
<td></td>
</tr>
<tr>
<td>CZP5 brown</td>
<td>575</td>
<td>93.0</td>
<td>0.407</td>
<td>86.4</td>
<td>54.3</td>
<td>32.1</td>
<td>1.591</td>
<td>37.2</td>
<td></td>
</tr>
<tr>
<td>CZP6 gray</td>
<td>586</td>
<td>92.3</td>
<td>0.410</td>
<td>84.9</td>
<td>55.8</td>
<td>29.1</td>
<td>1.522</td>
<td>34.3</td>
<td></td>
</tr>
<tr>
<td>CZP6 brown</td>
<td>584</td>
<td>91.8</td>
<td>0.254</td>
<td>84.9</td>
<td>63.6</td>
<td>21.3</td>
<td>1.335</td>
<td>25.1</td>
<td></td>
</tr>
<tr>
<td>SMS5 gray</td>
<td>597</td>
<td>92.2</td>
<td>0.611</td>
<td>85.1</td>
<td>40.9</td>
<td>44.2</td>
<td>2.081</td>
<td>51.9</td>
<td></td>
</tr>
<tr>
<td>SMS5 brown</td>
<td>568</td>
<td>92.6</td>
<td>0.624</td>
<td>86.4</td>
<td>45.1</td>
<td>41.3</td>
<td>1.916</td>
<td>47.8</td>
<td></td>
</tr>
<tr>
<td>SMS6 gray</td>
<td>599</td>
<td>90.9</td>
<td>0.669</td>
<td>83.8</td>
<td>37.8</td>
<td>46.0</td>
<td>2.217</td>
<td>54.9</td>
<td></td>
</tr>
<tr>
<td>SMS6 brown</td>
<td>570</td>
<td>90.7</td>
<td>0.568</td>
<td>84.5</td>
<td>46.4</td>
<td>38.1</td>
<td>1.821</td>
<td>45.1</td>
<td></td>
</tr>
<tr>
<td>Glass gray</td>
<td>643</td>
<td>98.5</td>
<td>0.213</td>
<td>92.4</td>
<td>57.0</td>
<td>35.4</td>
<td>1.621</td>
<td>38.3</td>
<td></td>
</tr>
<tr>
<td>Mean±SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85.9±3.0</td>
<td>52.6±2.1</td>
<td>33.2±0.9</td>
<td>1.681±0.3</td>
<td>38.7±10.6</td>
</tr>
</tbody>
</table>

†The first two characters mean initials of company names and the next one character indicates initials of brand names, a digit number indicate 5 for middle index and 6 for high index, the next words show colors of photochromic lenses. ‡Photochromic factor was calculated as ratio of the colorless state to the colored state in transmittances. SD: standard deviation, λ_{max}: wavelength of maximum absorbance, T_{max}: maximum transmittance at λ_{max}, ΔOD: change of optical density, $\Delta T\%$: difference between colorless and colored state, Block %: optical blocking % ratio of $\Delta T\%$ to colorless state $T\%$. r: Pearson’s correlation coefficient.

장(λ_max) 기준의 반감기(t_{1/2})와 380~780 nm의 평균 흡수도를 기준한 반감기(t_{95/2})로 결정하였다.

3) 자료 분석
자료 분석은 SPSS(Ver.21 for window)를 이용하여 기술 통계, 평균비교 및 상관관계 분석을 실시하였다. 모든 분석에서 신뢰구간은 95%하였고 유의확률(p) < 0.05일 때 통계적으로 유의한 차이를 보이는 것으로 판단하였다.

결과 및 고찰
1. 광변색렌즈의 광학적 성능
14개 사 36개 제품의 광변색렌즈에 대한 광학적 변화의 특성은 Table 2와 같다.

\[\lambda_{\text{max}} \]는 가시광선 영역(380~780 nm)에서 번색 전과 후의 투과율 차이가 최대값인 파장을 말하며, \[\lambda_{\text{max}} \]가 2개 이상인 경우 단장으로 결정하였고 번색이 일어나는 지점으로 하였다. \[\lambda_{\text{max}} \]에서 최고의 투과율을 \[T_{\text{max}} \]라 하였다. 본 연구에서 번색렌즈 테스터기에 의한 활성화된 유색 상태의 투과율은 380~780 nm에서 37.6%~68.4%, \[\lambda_{\text{max}} \]에서 5.5%~40.0%이었다. 이는 Renzi-Hammond 등\[14\]의 광변색렌즈가 시간에 따라 다가로서 크레센(xenon) 괴를 이용하여 활성화된 유색 상태의 투과율 63%~71%보다 낮다. 이러한 낮은 투과율은 광변색렌즈의 퇴색속도 평가시 높은 활성화 상태에서 평가되었다는 의미이다. 그러나 조사 대상에 대한 광변색렌즈의 활성화 상태, 즉 정상 상태 투과율(steady state transmittance)은 본 연구에서 확인하지 않았다. 무색과 유색 상태의 투과율은 가시광선 영역의 평균 투과율이며, 이들 두 투과율 차이를 \[\Delta T\% \]라 하였으며 이는 번색의 폭이 크다는 의미이다. 평균도 변화(change in optical density, \[\Delta OD \])는 광변색 후 일정한 시간의 경과에서 투과율의 변화를 \[\Delta OD = \log_{10}(\text{colorless state} T\%)-\log_{10}(\text{colored state} T\%) \]로 나타낸다. \[\Delta OD \]가 높을수록 색 의 밀도가 높은 것으로 유색 상태와 무색 상태의 차이가 확실하여 명확한 번색효과를 볼 수 있다는 의미로 해석된다. 광변색 인자(photochromic factor, \[PF \])\[15\]는 유색 상태에 대한 무색 상태의 투과율의 비율을 말하며, 광변색 반응의 동적 범위(dynamic range of photochromic reaction)를 나타낸다. \[PF \]는 평밀도와 유사한 시간 경과에 따른 변화를 고려하지 않은 차이점을 갖고 있다. 광변색렌즈의 선글라스 기능으로서 광 차단율(block %)은 무색 상태의 투과율에 대한 가시광선 영역에서 광차단율(\[\Delta T\% \])을 나타낸 것이다.

이 연구는 코팅광변색렌즈의 \[\lambda_{\text{max}} \]의 \[t_{1/2} \]은 45(CZP6 brown)~195 sec(SWG5 gray), \[t_{95/2} \]은 44(HYS5 brown)~217 sec(SWG5 gray)로 \[t_{1/2} \]보다 \[t_{95/2} \]가 넓은 범위의 분포도를 보였다. 이러한 분포의 차이는 \[t_{1/2} \]의 경우 단일 파장을 반영한 것이며, \[t_{95/2} \]는 가시영역 전체를 반영한 것으로 투과율(흡수도)의 차이에서 나타난 결과로 생각한다. 또한 단일 파장에서는 \[\lambda_{\text{max}} \]의 위치에 따라 측정 시간의 시차를 고려하지 않은 점이다. 앞으로 이에 관한 추가적인 연구가 필요하다.
Table 3. Fading rate of photochromic lenses according to measurement criteria

<table>
<thead>
<tr>
<th>Photochromic lens</th>
<th>λ_{max} criterion $k_\lambda \times 10^3$</th>
<th>$t_{1/2}$ sec R^2</th>
<th>Mean transmittance criterion $k_m \times 10^3$</th>
<th>$t_{1/2}$ sec R^2</th>
<th>T_{min} sec (min/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWG5 gray</td>
<td>3.546</td>
<td>195</td>
<td>0.801</td>
<td>3.193</td>
<td>217</td>
</tr>
<tr>
<td>SWG5 brown</td>
<td>3.649</td>
<td>190</td>
<td>0.859</td>
<td>3.882</td>
<td>179</td>
</tr>
<tr>
<td>NK5 gray</td>
<td>9.900</td>
<td>70</td>
<td>0.963</td>
<td>9.467</td>
<td>73</td>
</tr>
<tr>
<td>NK5 brown</td>
<td>8.722</td>
<td>79</td>
<td>0.944</td>
<td>8.155</td>
<td>85</td>
</tr>
<tr>
<td>RDP5 gray</td>
<td>6.054</td>
<td>114</td>
<td>0.934</td>
<td>5.670</td>
<td>122</td>
</tr>
<tr>
<td>RDP5 brown</td>
<td>4.958</td>
<td>140</td>
<td>0.914</td>
<td>4.716</td>
<td>147</td>
</tr>
<tr>
<td>CVS5 gray</td>
<td>5.904</td>
<td>117</td>
<td>0.898</td>
<td>4.555</td>
<td>152</td>
</tr>
<tr>
<td>CVS5 brown</td>
<td>5.105</td>
<td>136</td>
<td>0.850</td>
<td>4.382</td>
<td>158</td>
</tr>
<tr>
<td>JAP5 gray</td>
<td>6.713</td>
<td>103</td>
<td>0.948</td>
<td>6.571</td>
<td>105</td>
</tr>
<tr>
<td>JAP5 brown</td>
<td>7.579</td>
<td>91</td>
<td>0.871</td>
<td>7.744</td>
<td>90</td>
</tr>
<tr>
<td>DMP5 gray</td>
<td>7.500</td>
<td>92</td>
<td>0.961</td>
<td>6.618</td>
<td>105</td>
</tr>
<tr>
<td>DMP5 brown</td>
<td>8.543</td>
<td>81</td>
<td>0.958</td>
<td>5.789</td>
<td>120</td>
</tr>
<tr>
<td>DMT5 gray</td>
<td>8.459</td>
<td>82</td>
<td>0.986</td>
<td>8.169</td>
<td>85</td>
</tr>
<tr>
<td>DMT5 brown</td>
<td>8.338</td>
<td>83</td>
<td>0.986</td>
<td>7.907</td>
<td>88</td>
</tr>
<tr>
<td>DMT6 gray</td>
<td>8.495</td>
<td>82</td>
<td>0.995</td>
<td>8.401</td>
<td>83</td>
</tr>
<tr>
<td>DMT6 brown</td>
<td>9.993</td>
<td>69</td>
<td>0.986</td>
<td>9.984</td>
<td>69</td>
</tr>
<tr>
<td>CMT6 gray</td>
<td>4.692</td>
<td>148</td>
<td>0.995</td>
<td>4.216</td>
<td>164</td>
</tr>
<tr>
<td>CMT6 brown</td>
<td>6.136</td>
<td>113</td>
<td>0.997</td>
<td>5.426</td>
<td>128</td>
</tr>
<tr>
<td>TOA5 gray</td>
<td>7.771</td>
<td>89</td>
<td>0.975</td>
<td>8.658</td>
<td>80</td>
</tr>
<tr>
<td>YJG6 gray</td>
<td>5.489</td>
<td>126</td>
<td>0.946</td>
<td>5.203</td>
<td>133</td>
</tr>
<tr>
<td>YJG6 brown</td>
<td>4.036</td>
<td>172</td>
<td>0.959</td>
<td>4.633</td>
<td>150</td>
</tr>
<tr>
<td>OTS6 gray</td>
<td>10.677</td>
<td>65</td>
<td>0.984</td>
<td>10.695</td>
<td>65</td>
</tr>
<tr>
<td>OTS6 brown</td>
<td>12.168</td>
<td>57</td>
<td>0.989</td>
<td>9.391</td>
<td>74</td>
</tr>
<tr>
<td>HYS5 gray</td>
<td>9.176</td>
<td>76</td>
<td>0.996</td>
<td>9.019</td>
<td>77</td>
</tr>
<tr>
<td>HYS5 brown</td>
<td>11.162</td>
<td>62</td>
<td>0.998</td>
<td>15.616</td>
<td>44</td>
</tr>
<tr>
<td>HYS6 gray</td>
<td>9.390</td>
<td>74</td>
<td>0.988</td>
<td>9.122</td>
<td>76</td>
</tr>
<tr>
<td>HYS6 brown</td>
<td>9.818</td>
<td>71</td>
<td>0.993</td>
<td>9.630</td>
<td>72</td>
</tr>
<tr>
<td>CZP5 gray</td>
<td>8.600</td>
<td>81</td>
<td>0.986</td>
<td>7.916</td>
<td>88</td>
</tr>
<tr>
<td>CZP5 brown</td>
<td>8.500</td>
<td>82</td>
<td>0.976</td>
<td>7.090</td>
<td>98</td>
</tr>
<tr>
<td>CZP6 gray</td>
<td>11.016</td>
<td>63</td>
<td>0.960</td>
<td>10.705</td>
<td>65</td>
</tr>
<tr>
<td>CZP6 brown</td>
<td>15.414</td>
<td>45</td>
<td>0.999</td>
<td>10.257</td>
<td>68</td>
</tr>
<tr>
<td>SMS5 gray</td>
<td>4.659</td>
<td>149</td>
<td>0.981</td>
<td>4.300</td>
<td>161</td>
</tr>
<tr>
<td>SMS5 brown</td>
<td>5.704</td>
<td>122</td>
<td>0.997</td>
<td>5.198</td>
<td>133</td>
</tr>
<tr>
<td>SMS6 gray</td>
<td>5.360</td>
<td>129</td>
<td>0.997</td>
<td>4.925</td>
<td>141</td>
</tr>
<tr>
<td>SMS6 brown</td>
<td>7.517</td>
<td>92</td>
<td>0.994</td>
<td>7.035</td>
<td>99</td>
</tr>
<tr>
<td>Glass gray</td>
<td>5.245</td>
<td>132</td>
<td>0.905</td>
<td>4.227</td>
<td>164</td>
</tr>
</tbody>
</table>

1The first two characters mean initials of company names and the next one character indicates initials of brand names, a digit number indicate 5 for middle index and 6 for high index, the next words show colors of photochromic lenses. 2Fading time until the 80% transmittance at λ_{max} is reached. λ_{max}: wavelength of maximum absorbance, k_λ and k_m: fading rate constant for each criterion, $t_{1/2}$ and $t_{1/2}$: half-life time ‘ln2/k’ for each criterion, R^2: coefficient of determination.
한편, 반감기는 특정 시간과 흡수도(투과율에서 변환) 관계의 선형화귀식(linear regression equation)으로부터 속도상수를 결정하여 구한다. Fig. 1은 반감기 결정 과정의 한 예이다. 여기서 결정계수(R^2)는 상관계수(r)의 제곱으로 결정계수가 높은 것은 퇴색과정이 일차 속도식에 잘 맞는 것으로 반감기의 신뢰도가 높다는 의미이다. R^2가 $t_{1/2}$에서 0.801(SWG gray)~0.999(CZP6 brown)이고, $t_{1/2}$에서 0.851(SWG gray)~1.000(HYS5 gray, SMS5 brown)로 나타났다.

또한, 광변색렌즈의 퇴색 과정에서 일정 시간 경과 후의 무색 상태를 λ_{max}에서 투과율이 80%까지 이르기까지의 시간($T_{80\%}$)으로 측정하였다. 결계는 JAP5 brown에서 127 sec(2’ 07”)부터, JAP5 brown에서 3,523 sec(58’ 43”)까지 다양한 것으로 나타났다. 위 결과에서 보듯이 반감기와 $T_{80\%}$는 광변색렌즈에 따라 차이를 보였다. 이러한 퇴색속도에 영향을 주는 요인을 분석한 결과는 Table 4와 같다.

두 반감기 $t_{1/2}$과 $t_{m1/2}$의 평균은 각각 108±37 sec와 117±42 sec 유의한 차이를 보였다는(paired t-test, $p=0.001$). 굴절률이나 색상에 따른 차이는 $t_{1/2}$와 $t_{m1/2}$에서 유의하지 않았으나(student’s t-test, $t_{1/2}$: $p=0.783$와 0.619, $t_{m1/2}$: $p=0.574$와 0.619), $T_{80\%}$에서 고글절이 중글절 렌즈보다 더 빨은 시간으로 유의성을 보였고(student’s t-test, $p=0.034$), 왜색 렌즈가 밝색 렌즈보다 빠르다(student’s t-test, $p=0.005$). 제조 방법에 따른 차이는 $t_{1/2}$와 $t_{m1/2}$에서 모두 유의하였고(모두

Table 4. Comparative statistical data of factors influencing on fading rate

<table>
<thead>
<tr>
<th>Index</th>
<th>$t_{1/2}$, sec</th>
<th>$t_{m1/2}$, sec</th>
<th>$T_{80%}$, sec</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Middle</td>
<td>108±37</td>
<td>117±42</td>
<td>493±819</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>93±38</td>
<td>99±36</td>
<td>238±108</td>
<td></td>
</tr>
<tr>
<td>Student’s t-test</td>
<td>p=0.783 (t=1.118)</td>
<td>p=0.619 (t=1.302)</td>
<td>p=0.034 (t=1.152)</td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gray</td>
<td>105±35</td>
<td>113±43</td>
<td>257±118</td>
<td></td>
</tr>
<tr>
<td>Brown</td>
<td>99±41</td>
<td>106±38</td>
<td>546±928</td>
<td></td>
</tr>
<tr>
<td>Student’s t-test</td>
<td>p=0.574 (t=0.432)</td>
<td>p=0.524 (t=0.549)</td>
<td>p=0.005 (t=−1.346)</td>
<td></td>
</tr>
<tr>
<td>Manufacture Process</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Casting</td>
<td>130±37°</td>
<td>142±35°</td>
<td>702±1038</td>
<td></td>
</tr>
<tr>
<td>Imbibition</td>
<td>91±25°</td>
<td>95±31°</td>
<td>244±24</td>
<td></td>
</tr>
<tr>
<td>Coating</td>
<td>83±30°</td>
<td>90±33°</td>
<td>394±550</td>
<td></td>
</tr>
<tr>
<td>one-way ANOVA</td>
<td>p=0.001 F(2,33)=8.089</td>
<td>p=0.001 F(2,33)=9.359</td>
<td>p=0.098 F(2,33)=2.490</td>
<td></td>
</tr>
<tr>
<td>Total (N=36)</td>
<td>102±37</td>
<td>110±40</td>
<td>394±650</td>
<td></td>
</tr>
</tbody>
</table>

Data are mean±standard deviation (SD). p-values of less than 0.05 indicate statistically significant correlations. The results of Bonferroni Post-hoc. Fading time until the 80% transmittance at λ_{max} is reached. $t_{1/2}$ and $t_{m1/2}$: half-life time ‘$\ln2/k$’ for each criterion, r: Pearson’s correlation coefficient.
Table 5. Comparison of fading rate among photochromic lenses

<table>
<thead>
<tr>
<th>(t_{1/2}), sec</th>
<th>Photochromic lens</th>
<th>Factor</th>
<th>(t_{1/2}), sec</th>
<th>Photochromic lens</th>
<th>Factor</th>
<th>(T_{80%}), sec</th>
<th>Photochromic lens</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>CZP6 brown</td>
<td>co</td>
<td>h b</td>
<td>44</td>
<td>HY55 brown</td>
<td>co</td>
<td>m b</td>
<td>127</td>
</tr>
<tr>
<td>57</td>
<td>OTS6 brown</td>
<td>co</td>
<td>h b</td>
<td>65</td>
<td>CZP6 gray</td>
<td>co</td>
<td>h g</td>
<td>137</td>
</tr>
<tr>
<td>62</td>
<td>HY55 brown</td>
<td>co</td>
<td>m b</td>
<td>65</td>
<td>OTS6 gray</td>
<td>co</td>
<td>h g</td>
<td>138</td>
</tr>
<tr>
<td>63</td>
<td>CZP6 gray</td>
<td>co</td>
<td>h g</td>
<td>68</td>
<td>CZP6 brown</td>
<td>co</td>
<td>h b</td>
<td>146</td>
</tr>
<tr>
<td>65</td>
<td>OTS6 gray</td>
<td>co</td>
<td>h g</td>
<td>69</td>
<td>DMT6 brown</td>
<td>im</td>
<td>h b</td>
<td>155</td>
</tr>
<tr>
<td>148</td>
<td>CMT6 gray</td>
<td>im</td>
<td>h m</td>
<td>161</td>
<td>SMS5 gray</td>
<td>co</td>
<td>m g</td>
<td>387</td>
</tr>
<tr>
<td>Slow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>SMS5 gray</td>
<td>co</td>
<td>m g</td>
<td>164</td>
<td>Glass gray</td>
<td>ca</td>
<td>m g</td>
<td>572</td>
</tr>
<tr>
<td>172</td>
<td>YJG6 brown</td>
<td>ca</td>
<td>h b</td>
<td>164</td>
<td>CMT6 gray</td>
<td>im</td>
<td>h g</td>
<td>695</td>
</tr>
<tr>
<td>190</td>
<td>SWG5 brown</td>
<td>ca</td>
<td>m b</td>
<td>179</td>
<td>SWG5 brown</td>
<td>ca</td>
<td>m b</td>
<td>2344</td>
</tr>
<tr>
<td>195</td>
<td>SWG5 gray</td>
<td>ca</td>
<td>m g</td>
<td>217</td>
<td>SWG5 gray</td>
<td>ca</td>
<td>m g</td>
<td>3523</td>
</tr>
</tbody>
</table>

†The first two characters mean initials of company names and the next one character indicates initials of brand names, a digit number indicate 5 for middle index and 6 for high index, the next words show colors of photochromic lenses.

Fading time until the 80% transmittance at \(t_{1/2} \) is reached. \(t_{1/2} \) and \(t_{1/2} \), half-life time ‘ln2/k’ for each criterion, co: coating, im: imbibition, ca: casting, m: middle index, h: high index, b: brown color, g: gray color.

Fig. 2. Photochromic lenses with fast (top 5 lenses) or slow (bottom 5 lenses) fading rate.
을 평가할 수 있는 유색과 무색 상태의 투과율 차이(ΔT%) 를 기준으로 평가하는 것이 바람직한 것으로 본다. 그 이 유는 ΔT%가 광밀도 변화(AOD), 유색 상태에 대한 무색 상태의 투과율의 비율로 나타내는 광변색 인지(PF) 및 광 차단율(Block %)와 상관관계가 높고 광변색렌즈 유증에서 누구나 쉽게 알 수 있는 요소가기 때문이다.

반감기 기준으로 광변색렌즈의 투과속도를 평가한 결과는 코팅법이 침투법과 캐스팅법보다 빨랐고, 굴절률, 색상에 따른 차이는 없었다. 캐스팅 제품의 투과속도를 평가한 결과는 코팅법, 굴절렌즈와 캐스팅렌즈가 빨랐고, 색상에 관계없이 캐스팅렌즈가 빨랐다. 또한, 변색 후 무색 상태를 평가하는 항목, 즉 λmax에서 투과율이 80%에 도달하는 시간(T80%)은 투과한 색상보다 빠른 것으로 나타났다.

국내 유통되고 있는 광변색렌즈의 변색특성, 특히 투과 속도에 따른 변동 범위가 넓었다. 이는 제품에 따라 성능의 차이가 다양하다는 의미이다. 따라서 제조사들은 유통과 경에서 광변색렌즈의 특성, 즉 무색의 투과율 차이, 반 감기 및 특정 투과율에 도달하는 시간을 표기하여 렌즈 취급자와 소비자에게 정확한 정보를 제공해야 할 것이다.

감사의 글

2016년도 강원대학교 대학회계 학술연구조성비로 연구하였음(관리번호-620160151).

REFERENCES

목적: 광변색렌즈의 성능에 영향을 주는 퇴색속도와 요인들을 평가하고자 하였다. 방법: 14개 회사로부터 36개 제품의 국내 유통 광변색렌즈를 수집하였고, 자외선 조사로 퇴색시간 후 가시광선 영역에서 시간에 따른 투과율을 측정하였다. 투과율은 UV/VIS 분광광도계로 측정하였다. 퇴색속도는 반감기\(t_{1/2}\)와 투과율 80%까지 퇴색되는 시간\(T_{80\%}\)으로 평가하였다. 결과: 광변색렌즈의 성능은 광밀도 변화\(\Delta OD\), 광 차단율\(\text{block} \%\)보다 투과율 차이\(\Delta T\%\)에서 더 잘 드러났다. \(t_{1/2}\)에서 코팅법이 침투법과 캐스팅법보다 빨랐다\(\text{one-way ANOVA, } p=0.001\). 광변색렌즈의 \(T_{80\%}\)은 중굴절보다 고굴결에서, 갈색보다 회색에서 유의하게 빨랐다\(\text{student’s } t\text{-test, 각각 } p=0.034, p=0.005\). 그러나 \(T_{80\%}\)은 \(t_{1/2}\)와 상관관계는 없었다. 광변색 작용은 \(\Delta T\%\)에서 14.9%~48.9%, \(t_{1/2}\)에서 44 sec~217 sec, \(T_{80\%}\)에서 127sec\(=2′07″\)~3,523 sec\(=58′43″\)로 다양하게 나타났다. 결론: 퇴색속도에 근거한 광변색렌즈의 성능은 각 제품마다 큰 차이를 보였다. 따라서 제조사들은 퇴색속도와 관련된 정확한 광변색의 정보\(\Delta T\%, t_{1/2}, T_{80\%}\)를 소비자와 취급자에게 제공해야 할 것이다.

주제어: 광변색렌즈, 퇴색속도, 반감기, 투과율, 국내 시장