Synthesis of Cerium Nanoparticles Using a Non-Aqueous Low Temperature Method and Application in High-Functional Contact Lenses

Chae-Young Kim^{1,a} and A-Young Sung^{2,b,*}

¹Dept. of Optometry and Vision Science, Daegu Catholic University, Student, Daegu 38430, Korea ²Dept. of Optometry and Vision Science, Daegu Catholic University, Professor, Daegu 38430, Korea (Received April 10, 2024: Revised April 29, 2024: Accepted May 03, 2024)

Purpose: The purpose of this study was to analyze and compare the physical properties of lenses manufactured using cerium (IV) oxide (CeO₂) nanoparticles synthesized by thermosynthesis and to evaluate their applicability as a high-functional contact lens material. **Methods**: CeO₂ nanoparticles were prepared by a non-aqueous low temperature thermosynthesis method. The synthesized CeO₂ nanoparticles were copolymerized with 2-hydroxyethyl methacrylate (HEMA) to measure the physical properties of the lens polymer. **Results**: The synthesized CeO₂ nanoparticles were assessed using scanning electron microscopy and electron dispersive spectroscopy. As a result of measuring the physical properties of the manufactured lens, the UV-B transmittance of the contact lens to which Ref and various ratios of nanoparticles were added was 67.07-79.80%, the refractive index was 1.4341-1.4388, the moisture content was 38.99-39.57% and the tensile strength was 0.0616-0.1410 kgf/mm². **Conclusions**: Hydrogel contact lenses containing CeO₂ nanoparticles had improved refractive index and tensile strength, and the UV-B blocking rate was increased with increasing nanoparticle content. Additionally, the polymerization stability and durability of the lens improved. Thus, CeO₂ nanoparticles can be used as a high-functional hydrogel lens material with various advantages.

.....

Key words: CeO₂, Nanoparticles, Thermosynthesis method, Cerium nitrate

서 론

나노입자는 100 nm 이하의 작은 크기의 물질로 작은 비 중량, 표면적, 우수한 기계적 강도, 전환 성능, 수송, 촉매 활성 증가 등 각기 다른 특성을 가진다. 산업 기술의 발달 로 나노입자의 응용이 반도체, 재료과학, 생명과학 분야에 이르기까지 다양한 분야에서 나노입자가 영향을 미치고 있는 중요한 산업 기술로 급성장해 나가고 있으며, 나노입 자를 안 의료용 재료로 하는 콘택트렌즈에 관한 연구도 활발하게 진행 중에 있다.^[1,2] 산화세륨은 란탄계열에 속하 는 원자번호 58번의 가장 풍부한 희토류 금속으로 나노입 자로 활용 시 UV 흡수능력, 고온에서의 높은 안정성 및 높은 강도와 활성, 생체 내 활성산소 약화, 염증 개선, 세 포사멸 방지, 상처 치유 등 여러 응용 분야에서 다양한 목 적으로 적용 되어지고 있는 생체 적합성이 우수한 입자이 다.[3-5] 따라서 다양한 분야에서 사용되는 만큼 나노 사이 즈의 산화세륨 합성법 또한 다양한 방법이 사용되고 있다 . 산화세륨 나노입자의 제조 방법으로는 열합성법, 졸-겔

법, 분무 열분해법, 전기화학적 방법, 공침법, 초음파화학 및 파이크로파 등 여러 가지 방법이 있으며.[6-11] 하이드로 젤 콘택트렌즈에 나노입자를 응용하기 위해서는 나노입자 의 표면적을 최대화하기 위해 나노입자를 더 작게 만드는 방법이 필요하다. 나노분말의 특성을 제어하면서 합성하 는 것은 중요한 요인중 하나이다. 다양한 합성 방법 중 열 합성법으로 합성된 나노입자들은 작은 사이즈의 입자 반 경에 의해 고 비율의 비표면적을 가지게 되는데 이로 인 해 나노입자들끼리 강하게 응집하려는 경향이 나타날 수 있으므로 나노입자가 고르게 잘 분산되어 있어야 나노입 자의 특성이 향상될 수 있다.[12,13] 본 연구에서 사용하려는 산화세륨 나노입자는 서로 뭉치기 쉽고 표면에너지와 활 성이 높아 취급이 어렵기 때문에 하이드로겔 렌즈와 교반 하기 위해서는 이에 맞는 분산제의 사용이 필요하다.[14] 특히 PVP(polyvinyl pyrrolidone)를 분산제로 사용한 경우, 나노입자의 후속 화학반응을 억제시키며, 나노입자의 분 산 안전성을 향상시켜주는 역할을 한다.[15] 따라서 본 연 구에서는 열 합성법중 저온으로 합성이 가능한 비수계 저

^{*}Corresponding author: A-Young Sung, TEL: +82-53-850-2554, E-mail: say123sg@hanmail.net

Authors ORCID: ahttps://orcid.org/0009-0004-5487-6240, https://orcid.org/0000-0002-9441-919X

온방식으로 CeO₂ nanoparticle을 합성한 후, PVP(polyvinyl pyrrolidone)를 사용하여 응집성을 제어하고, 하이드로겔 렌 즈와 응집성이 제어된 CeO₂ nano-particle을 교반하여 안정 성 및 내구성이 향상된 고기능성 하이드로겔 콘택트렌즈 로서의 응용 가능성을 확인하였다.

재료 및 방법

1. 시약 및 재료

산화세륨 나노입자를 합성하기 위해 질산세륨(cerium (iii) nitrate hexahydrate), 페네틸알코올(phenylethyl alcoho)을 사용하였고, 하이드로겔 렌즈를 제조하기 위해 주재료인 2-Hydroxyethyl methacrylate(HEMA)와 열 개시제인 2,2'-Azobis(2-methylpropionitrile)(AIBN), 교차결합제인 Ethylene glycol dimethacrylate(EGDMA), 나노입자의 분산제로는 polyvinylpyrrolidone(PVP)를 사용하였다. 모든 시약은 Sigma-Aldrich(USA)사에서 구입하여 사용하였다.

2. 나노입자 합성 및 고분자 중합

1) 산화세륨 나노입자 합성

위 실험은 특허출원 제200910062703를 참고하여 산화 세륨 나노입자를 제조하기 위해 열 합성법 비수계 저온 제조방식으로 합성하였으며^[16] 질산세륨(cerium(iii) nitrate hexahydrate), 페네틸알코올(phenylethyl alcohol)을 사용하 였다. 다양한 크기의 산화세륨 나노입자를 합성하기 위해 합성을 3회 진행하였다. 1차시의 경우 질산세륨(Ce (NO₃)₃·6H₂O) 0.05 mol을 페네틸알코올(C₈H₁₀O) 10 ml와 함께 30분간 초음파 교반 진행 후, 50°C에서 500 PRM 속 도로 30분간 자석 교반을 진행하였다. Oil bath를 이용하 여 100°C에서 10시간 오일 중탕하여 50°C에서 15시간 동안 완전히 열건조시켰다. 2차시의 경우 질산세륨(Ce(NO₃)₃·6H₂O) 0.05 mol을 페네틸알코올(C₈H₁₀O) 10 ml와 함께 40

Fig. 1. CeO₂ nanoparticle sample.

		-				
	HEMA	EGDMA	AIBN	PVP	CeO ₂	TOTAL
Ref.	99.30	0.50	0.20	-	-	100.00
C_1	97.28	0.50	0.20	2.00	0.02	100.00
C_2	97.25	0.50	0.20	2.00	0.05	100.00
C_3	97.20	0.50	0.20	2.00	0.10	100.00

HEMA, 2-Hydroxyethyl methacrylate; EGDMA, Ethylene glycol dimethacrylate; AIBN, 2,2'-Azobis (2-methylpropionitrile); PVP, polyvinylpyrrolidone

분간 초음파 교반 진행 후, 50°C에서 800PRM 속도로 40분 간 자석 교반을 진행하였다. Oil bath를 이용하여 130°C에 서 10시간 오일 중탕하여 50°C에서 24시간동안 완전히 열 건조시켰다. 3차시의 경우 질산세륨(Ce(NO₃)₃·6H₂O) 0.05 mol을 페네틸알코올(C₈H₁₀O) 10 ml와 함께 60분간 초 음파 교반 진행 후, 50°C에서 500PRM 속도로 60분간 자 석 교반을 진행하였다. Oil bath를 이용하여 100°C에서 10 시간 오일 중탕하여 50°C에서 24시간동안 완전히 열건조 시켰다. nanoparticle 합성 시료 사진을 Fig. 1에 나타내었다.

2) 산화세륨 나노입자가 포함된 하이드로겔 렌즈 중합

HEMA를 기준으로 교차결합제인 EGDMA 0.5%, 개시 제인 AIBN 0.2%를 첨가하여 Ref를 제조하였으며, 합성된 산화세륨 나노입자를 각각 0.02%, 0.05% 및 0.1%의 비율 로 각각 첨가하였다. 또한 산화세륨 나노입자가 비율별로 첨가된 군을 C_1, C_2, C_3으로 각각 명명하였다. Vortex 를 이용하여 1시간 교반하여 캐스트 몰드 방식으로 100℃ 에서 1시간 열중합 하였다. 제조된 렌즈의 물성측정을 위 해 중합된 렌즈들은 생리식염수에서 24시간 수화시킨 후 광투과율, 굴절률, 함수율, 접촉각 그리고 인장강도 실험 을 각각 진행하였다. 실험에 사용된 각 시료별 배합비를 Table 1에 나타내었다.

3. 측정기기 및 분석

합성된 산화세륨 나노입자를 확인하기 위해 전자주사현 미경(scanning electron microscope(SEM), Gemini 500, Zeiss, Germany)과 에너지 분산 분광기(energy dispersive spectroscopy(EDS), Gemini 500, Zeiss, Germany)를 사용하여 나 노입자의 형태 및 크기를 측정하였다. 제조된 렌즈의 분광 투과율은 Optical Transmittance(Cary 60) 장비를 사용하여 가시광선 영역, 근자외선 영역(UV-A, UV-B)에 대해 각각 측정하였다. 접촉각 측정은 Sessile drop방법으로 DSA30 (Kruss GMBH, Germany)장비를 사용하였다. 굴절률 측정 은 ABBE Refractometer(ATAGO NAR IT. JAPAN)장비를 사 용하였고, 함수율 측정은 전자저울 Ohaus(PAG 214C, USA)을 사용하였다. 인장강도 측정은 Universal Testing Machine(AGS-X, Shimadzu, Japan)장비를 사용하여 측정 속도 200~300 mm/min 기준으로 렌즈 표면의 수분을 제거 한 뒤 0에서 20초의 시간 동안0.000~1.000 kgf의 힘을 가 했을 때 렌즈의 파괴가 일어나는 최고 수치를 인장강도 값으로 나타내었다. 또한 렌즈의 중합 안정성을 테스트하 기 위해 용출시험(KMnO₄ reduction test, pH 시험, 흡광도) 을 통해 안정성을 평가하였다. 흡광도는 Agilent(Cary 60 UV-vis, USA)를 사용하여 10 mL의 3차 증류수에서 24시 간 동안 수화 시켜준 뒤, 시료의 검액을 채취하여 렌즈의 용출 안정성을 확인하기위해 1, 5, 10일 동안 각각 측정하 였다. 본 연구에서는 실험의 정확도를 높이기 위해 모든 시료를 5회 이상 반복 측정하였다. 수집된 자료들의 통계 처리방법으로는 SPSS for windows(Ver 22)을 사용해 분석 하였다. 세 그룹 모두 비모수 통계를 이용하여 데이터를 나타내었고, 세 그룹간 매개변수 비교는 Mann-Whitney U test를 이용하였다. 실험 평가는 세 그룹 모두 ANOVA를 이용하였고, 분석 결과에 따라 표준편차(SD)와 평균 (Mean)을 산출하였다. 유의 수준은 *p<0.05, **p<0.01, ***p<0.001로 하였다.

결과 및 고찰

1. 산화세륨 나노입자 합성 결과

1) 산화세륨 나노입자 합성

산화세륨 나노입자의 합성 결과를 확인하기 위해 SEM-EDS를 사용하였다. nanoparticle 유무의 측정결과로 Ce (75.58%), O(24.42%)의 원소를 나타내었다. 측정결과, 산 화세륨 나노입자의 미세구조가 확인되었으며, SEM-EDS 의 결과를 Fig. 2에 각각 나타내었다.

2) 산화세륨 나노입자를 포함한 하이드로겔 렌즈 제조

산화세륨 나노입자가 포함된 하이드로겔 렌즈의 제조 결과를 확인하기 위해 SEM을 통해 제조된 하이드로겔 렌

Fig. 3. Scanning electron micrograph of CeO₂ nanoparticles included in hydrogel lens.

즈 표면의 나노입자의 포함 유무를 확인하였다. SEM의 결과를 Fig. 3에 나타내었다.

2. 분광투과율

제조된 렌즈의 가시광선 영역(280-780 nm)을 기준으로 측정하여 광학적 특성을 평가하였다. Ref.의 경우 UV-B 영역에서 79.80%±<0.0001로 나타났으며, 합성된 산화세 륨 나노입자를 비율별로 첨가한 경우 각각 C_1 74.61%± <0.0001(**p<0.01), C_2 72.49%±<0.0001(**p<0.01), C_3 67.07%±<0.0001(**p<0.01)로 나타나 대조군과의 차이에 유의미한 관계를 보였다. 나노입자의 비율이 증가함에 따 라 UV-B 영역에서 투과율 감소를 나타내었다. 각각의 분 광투과율 결과를 Fig. 4에 정리하였다.

3. 굴절률과 함수율

제조된 렌즈의 굴절률을 측정한 결과, 합성된 산화세륨 나노입자가 포함되지 않은 대조군은 1.4341±0.0001로 나 타났다. 합성된 산화세륨 나노입자를 비율별로 첨가한 경 우 1.4376~1.4388±0.0001(***p*<0.01)으로 나타났으며, 첨 가 비율이 증가할수록 굴절률이 증가하였다. 함수율의 경

Fig. 2. Scanning electron microscopy and energy dispersive spectroscopy images of samples.

Fig. 4. Spectral transmittance diagrams of samples.

Fig. 5. Comparison of refractive index and water content of samples.

우 합성된 CeO₂ nanoparticle이 포함되지 않은 Ref.는 39.57%±0.75로 나타났으며, 합성된 산화세륨 나노입자를 비율별로 첨가한 경우에는 C_1는 39.45%±0.11(***p*<0.01),

C_2는 39.00%±0.49(***p*<0.01), C_3는 38.99%±0.24(***p*<0.01)로 나타나 대조군과의 차이에 유의미한 관계를 보였다. Ref.와 비교하였을 때 첨가 비율이 증가할수록 약간의 함수율 감소를 나타내었다. 제조된 렌즈의 굴절률 및 함수율 측정 결과를 Fig. 5에 나타내었다.

4. 접촉각

제조된 렌즈의 접촉각을 측정한 결과. 합성된 산화세륨 나노입자가 포함되지 않은 대조군은 67.72°로 나타났다. 합성된 산화세륨 나노입자를 비율별로 첨가한 경우 76.07~90.54°로 나타났으며, 첨가 비율이 증가할수록 나노 입자의 영향으로 접촉각이 증가하였다. 제조된 렌즈의 접 촉각 측정 결과를 Fig. 6에 나타내었다.

5. 인장강도

제조된 렌즈의 내구성을 평가하기 위해 인장강도를 측 정한 결과, 대조군의 인장강도는 0.0616 kgf/mm²로 나타 났으며, 합성된 산화세륨 나노입자를 비율별로 첨가한 C_1의 경우 0.0960 kgf/mm², C_2의 경우 0.1114 kgf/mm², C_3의 경우 0.1410 kgf/mm²로 나타났다. 이 결과 산화세 륨 나노입자의 비율이 증가함에 따라 인장강도가 증가함 을 나타내었다. 합성된 CeO₂ nanoparticle을 비율별로 첨가 한 렌즈가 Ref.렌즈보다 기계적 물성이 향상됨을 확인하 였다. 인장강도 측정결과를 Fig. 7에 나타내었다.

Fig. 6. Contact angle image of samples. A. Reference, B. 0.02% C. 0.05%, D. 0.10%.

Fig. 7. Tensile strength of sample. A. Reference, B. C_3.

Synthesis of Cerium Nanoparticles Using a Non-Aqueous Low Temperature Method and Application in High-Functional Contact Lenses 51

Fig. 8. Elution test of samples. A. KMnO4 reduction test, B. pH test, C. Absorbance.

6. 중합 안정성

제조된 렌즈의 중합 안정성을 평가하기 위해 KMnO4 reduction test, pH 시험, 흡광도를 측정하였다. PH 시험은 렌즈를 70℃에서 24시간 동안 가열 후 추출한 용출물을 실험군으로, 3차 증류수를 대조군으로 진행하였고, 모든 군에서 대조군과 실험군의 차이가 1.5미만 수치로 측정되 어 첨가제의 유무에 상관없이 중합 안정성을 나타내었다. KMnO₄ reduction test는 대조군의 추출된 검액이 21.80 ml 로 Ref를 제외한 모든 군에서 대조군과의 적정량 차이가 2 ml 미만으로 측정되었고, 합성된 산화세륨 나노입자의 첨가 비율이 늘어날수록 대조군과이 차이가 다소 줄어들 었다. 흡광도 역시 모든 군에서 0.30 미만의 흡광도를 나 타내어 우수한 중합 안정성을 나타내었고, 합성된 CeO2 nanoparticle의 첨가 비율이 늘어날수록 용출액의 양이 더 낮게 측정되었다. 이로 인해 합성된 산화세륨 나노입자가 첨가된 렌즈의 중합 안정성이 Ref.에 비해 다소 우수한 것 을 확인하였다. 각각의 중합 안정성 측정결과를 Fig. 8에 나타내었다.

결 론

본 연구에서는 열합성법을 사용하여 산화세륨 나노입자 를 합성하였으며, SEM-EDS를 통해 산화세륨 나노입자의 존재를 확인하였다. 합성된 산화세륨 나노입자를 2-Hydroxyethyl methacrylate(HEMA)에 첨가하여 하이드로 겔 렌즈 소재로 열중합하여 각각의 특성을 비교, 분석하였 으며, 합성 산화세륨 나노입자와 나노입자의 분산제 역할 을 하는 polyvinyl pyrrolidone(PVP)를 사용하여 고기능성 하이드로겔 콘택트렌즈로써의 응용 가능성을 알아보았다. 산화세륨 나노입자가 포함된 콘택트렌즈의 물성을 측정한 결과. 첨가 비율이 증가할수록 굴절률, 인장강도가 증가하 는 것으로 나타났으며, 또한 첨가비율이 증가할수록 함수 율 및 자외선 영역에 대한 분광투과율은 감소되는 것으로 나타났다. 중합 안정성의 경우 산화세륨 나노입자가 포함 된 렌즈가 Ref.보다 다소 우수한 것을 확인하였다. 따라서 하이드로겔 렌즈에 본 연구를 통해 합성된 산화세륨 나노 입자를 첨가제로 사용한 경우 굴절률 및 안정성과 내구성 이 향상된 고기능성 하이드로겔 렌즈로서의 사용이 가능 할 것으로 판단된다.

참고문헌

- Shin SM, Sung AY. Standardization study of extraction tests over hydration time for hydrogel ophthalmic lenses. Journal of Standards Certification and Safety. 2020;10 (1):31-38. DOI: https://doi.org/10.34139/JSCS.2020.10.1.31
- [2] Cassagneau T, Caruso F. Contiguous silver nanoparticle coatings on dielectric spheres. Adv Mater. 2022;14(10): 732-736. DOI: https://doi.org/10.1002/1521-4095(20020517)14 :10<732::AID-ADMA732>3.0.CO;2-P
- [3] Tsunekawa S, Sahara R, Kawazoe Y, et al. Origin of the blue shift in ultraviolet absorption spectra of nanocrystalline CeO_{2-x} particles. Mater Trans JIM. 2000;41(8):1104-1107. DOI: https://doi.org/10.2320/matertrans1989.41.1104
- [4] Rajeshkumar S, Naik P. Synthesis and biomedical applications of Cerium oxide nanoparticles. Biotechnol Rep. 2018;17:1-5. DOI: https://doi.org/10.1016/j.btre.2017.11.008
- [5] Jeong MA, Kim DA. Physical properties and cytotoxicity of dental pit and fissure sealants containing cerium oxide nano particles(CNPs). The Journal of the Korea Contents Association. 2022;22(3):586-592. DOI: https://doi.org/10. 5392/JKCA.2022.22.03.586
- [6] Lu L, Dai G, Yan L, et al. In-situ low-temperature sol-gel growth of nano-cerium oxide ternary composite films for ultraviolet blocking. Opt Mater. 2020;101:109724. DOI: https://doi.org/10.1016/j.optmat.2020.109724
- [7] Goharshadi EK, Samiee S, Nancarrow P. Fabrication of cerium oxide nanoparticles: characterization and optical properties. J Colloid Interface Sci. 2011;356(2):473-480. DOI: https://doi.org/10.1016/j.jcis.2011.01.063

- [8] Yahiro H, Baba Y, Eguchi K, et al. High temperature fuel cell with ceria?yttria solid electrolyte. J Electrochem Soc. 1988;135(8):2077. DOI: https://doi.org/10.1149/1.2096212
- [9] Yin L, Wang Y, Pang G, et al. Sonochemical synthesis of cerium oxide nanoparticles—effect of additives and quantum size effect. J Colloid Interface Sci. 2002;246(1):78-84. DOI: https://doi.org/10.1006/jcis.2001.8047
- [10] Zhang D, Fu H, Shi L, et al. Synthesis of CeO₂ nanorods via ultrasonication assisted by polyethylene glycol. Inorg Chem. 2007;46(7):2446-2451. DOI: https://doi.org/10.1021/ ic061697d
- Yang H, Huang C, Tang A, et al. Microwave-assisted synthesis of ceria nanoparticles. Mater Res Bull. 2005;40(10) :1690-1695. DOI: https://doi.org/10.1016/j.materresbull. 2005.05.014
- [12] Lee J, Kim JH, Wang H, et al. Multiscale study for the load transfer of polymer nanocomposites including the

agglomerated nanoparticles. Proceedings of the KSME Conference 2022. 2022;436-437.

- [13] Wen HL, Chen YY, Yen FS, et al. Size characterization of θ and α -Al₂O₃ crystallites during phase transformation. Nanostructured Materials. 1999;11(1):89-101. DOI: https://doi.org/10.1016/S0965-9773(99)00022-7
- [14] Liu KQ, Kuang CX, Zhong MQ, et al. Synthesis, characterization and UV-shielding property of polystyrene-embedded CeO₂ nanoparticles. 2013;35(12):2710-2715. DOI: https://doi.org/10.1016/j.optmat.2013.08.012
- [15] Choi HS, Kim HS. Passivation of Highly Reactive Aluminum Nanoparticles using PVP Polymer and Their Dispersion stability. Proceedings of the KSME Conference 2022. 2022;115.
- [16] Huazhong Normal University. Low-temperature preparation method of ceria nano-crystalline microsphere of graduation structure. C.N. Patent 101584981, 2009.

비수계 저온 방식을 사용한 세륨 나노입자의 합성 및 고기능성 콘택트렌즈로의 응용

김채영¹, 성아영^{2,*}

¹대구가톨릭대학교 대학원 안경광학과, 학생, 대구 38430 ²대구가톨릭대학교 안경광학과, 교수, 대구 38430 투고일(2024년 4월 10일), 수정일(2024년 4월 29일), 게재확정일(2024년 5월 3일)

목적: 본 연구는 비수계 저온방식으로 합성된 산화세륨나노입자(Cerium (IV) oxide (CeO₂) nanoparticle)를 사용하여 제조된 렌즈의 물성을 비교 및 분석하고 고기능성 콘택트렌즈 소재로서의 활용도를 알아보고자 하였다. **방법**: 산화세 륨나노입자(Cerium (IV) oxide (CeO₂) nanoparticle)는 열합성법 중 비수계 저온방식으로 제조하였으며, 합성된 CeO₂ nanoparticle을 2-Hydroxyethyl methacrylate (HEMA)와 공중합하여 렌즈 고분자의 물성을 측정하였다. **결과**: 합성된 산화세륨나노입자(Cerium (IV) oxide (CeO₂) nanoparticle)는 SEM-EDS를 통해 나노입자를 확인하였고, 제조된 렌즈 의 물리적 특성을 측정한 결과, 대조군 및 다양한 비율의 나노입자가 첨가된 콘택트렌즈의 UV-B 투과율은 67.07~79.80%, 굴절률은 1.4341~1.4388, 함수율은 38.99~39.57%, 접촉각은 67.62~90.54° 그리고 인장강도는 0.0616~0.1410 kgf/mm²을 나타내었다. 산화세륨나노입자(Cerium (IV) oxide (CeO₂) nanoparticle)이 포함된 하이드로겔 콘택트렌즈의 경우, 렌즈의 굴절률 및 인장강도를 향상시켰으며, 나노입자의 함량이 증가할수록 UV-B 영역에 대한 차단율이 향상되었다. **결론**: 렌즈의 중합 안정성 및 내구성을 향상시키는 것으로 나타나 산화세륨나노입자(Cerium (IV) oxide (CeO₂) nanoparticle)는 고기능성 하이드로겔 렌즈 소재로서 다양하게 활용될 수 있을 것으로 판단된다.

주제어: CeO2, 나노입자, 열합성법, 질산세륨